oblicz 4 9 2 1 6
Znajdź odpowiedź na Twoje pytanie o Oblicz: 4 1/4-2 2/3= 5 1/9-1 5/6= 3 1/15-1 1/10 5 5/13-3 1/2. Zad.1. Piotrek kupił 3 rodzaje ciastek: duże, średnie i małe. Duże ciastko kosztuje 4 zł za sztukę, średnie po 2 zł, a małe po 1 zł.
Oblicz: a)1 2/3*9/14= 4 3/18*9= b)12*3 1/6= 2 1/4*2 2/7= Natychmiastowa odpowiedź na Twoje pytanie. Mnożenie ułamków zwykłych. a) b) Jak wykonać mnożenie ułamków zwykłych?
Zad 2 - Oblicz 1 i 4/9 razy 12 6 razy 2 i 1/2 2 i 3/8 razy 12 (1 i 1/4) do potęgi drugiej (1 i 1/4) do potęgi trzeciej 4 I 2/7 razy 3 i 1/2 8 i 1/3 razt 2 i 2/5
Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Oblicz -4 + 4/9 8 - 10,2 -4 + (-3,5) -2 - (-1 1/2)
Szczególną uwagę warto zwrócić na potęgi liczby 10. Zauważmy, że: 1 = 10 0. 10 = 10 1. 100 = 10 2. 1000 = 10 3. 10000 = 10 4. Uogólniając, potęga liczby 10 wskazuje „liczbę zer po jedynce”. Zatem dla przykładu 10 2 0 oznacza liczbę z dwudziestoma zerami, czyli 100000000000000000000.
nonton film fast five sub indo rebahin.
Warunki w logarytmie: \(a>0\) i \(a\neq1\) i \(c>0\)Dla postaci: \(\log_{a}c=b\Leftrightarrow a^b=c\)Poniżej zamieszczamy wzory i właściwości logarytmów. \(a^{\log_{a}c}=c\)dla dowolnych x>0, y>0 oraz r zachodzą wzory: \(\log_{a}(x\cdot y)=\log_{a}x+\log_{a}y\)\(\log_{a}x^r=r\cdot \log_{a}x\)\(\log_{a} \left ( \frac{x}{y} \right )=\log_{a}x-\log_{a}y\)Wzór na zamianę podstawy logarytmu: Jeżeli \(a>0\), \(a\neq 1\), \(b>0\), \(b\neq 1\) oraz \(c>0\), to \(\log_{b}c=\dfrac{\log_{a}c}{\log_{a}b}\)Z powyższego wzoru wynika: \(\log_{b}c=\dfrac{1}{\log_{c}b}\)Pozostałe właściwości: \(\log_{a}1=0\)\(\log_{a}a=1\)\(\log_{a}a^b=b\)Oznaczanie logarytmów: \(\log x\) oraz \(\lg x\) oznacza \(\log_{10} x\); \(\ln x\) oznacza \(log_{e} x\), gdzie \(e\) to stała wynosząca \(e=2,71828182\cdots \); Przykładowe Oblicz wartość logarytmów: a) \(\log_{2} \dfrac{1}{2}\)b) \(\log_{5} \dfrac{1}{5}\)c) \(\log_{7} \dfrac{1}{49}\)d) \(\log_{3} \dfrac{1}{81}\)e) \(\log_{2} \dfrac{1}{16}\) Zobacz rozwiązanie Zad. 2) Oblicz wartość logarytmów: a) \(2\log_{16} 4\)b) \(3\log_{27} 3\)c) \(10\log_{32} 2\)d) \(-4\log_{\frac{1}{25}} 5\)e) \(6\log_{2} 2\) Zobacz rozwiązanie Zad. 3) Oblicz wartość logarytmów: a) \(3^{\log_{3} 8}\)b) \(6^{\log_{6} 19}\)c) \(8^{2\cdot \log_{8} 3}\)d) \(4^{\log_{2} \sqrt{7}}\) Zobacz rozwiązanie Zad. 4) Oblicz wartość logarytmów: a) \(\log_{14} 7+\log_{14} 2\)b) \(\log_{9} 27+\log_{9} 3\)c) \(\log_{4} 2+\log_{4} 8\)d) \(\log 25 +\log 4 \)e) \(\log_{7} \dfrac{1}{3}+\log_{7} 3\) Zobacz rozwiązanie Zad. 5) Oblicz wartość logarytmów: a) \(\log_{3} 6-\log_{3} 2\)b) \(\log_{2} 12-\log_{2} 3\)c) \(\log_{7} 28-\log_{7} 4\)d) \(\log_{5} 100-\log_{5} 4\)e) \(\log_{12} 24-\log_{12} 2\) Zobacz rozwiązanie Zad. 6) Oblicz wartość logarytmów: a) \(2\log_{6} 3+\log_{6} 4\)b) \(\log_{4} 25-2\log_{4} 3\)c) \(\log_{7} 392-3\log_{7} 2\)d) \(2\log_{72} 3+3\log_{72} 2\)e) \(2\log_{80} 4+\log_{80} 5\) Zobacz rozwiązanie Zad. 7) Oblicz wartość logarytmów: a) \(\log_{2} 2^4\)b) \(\log_{5} \dfrac{\sqrt{5}}{5}\)c) \(\log_{7} \dfrac{7\sqrt{7}}{\sqrt{7^3}}\)d) \(\log_{4} \dfrac{\sqrt[3]{4}}{\sqrt[5]{4}}\)e) \(\log 10\sqrt[3]{10} \) Zobacz rozwiązanie Zad. 8) Oblicz wartość logarytmów: a) \(\log_{4} 2\)b) \(\log_{36} 6\)c) \(\log_{\frac{1}{5}} 25\)d) \(\log_{81} 27\)e) \(\log_{\frac{1}{3}} 3\sqrt[7]{3}\) Zobacz rozwiązanie
Oblicz kwartyle Z populacji generalnej pobrano n = 50-elementową próbkę i przebadano ze względu na cechę X. Otrzymano wyniki: 3,6, 5,0, 4,0, 4,7, 5,2, 5,9, 4,5, 5,3, 5,5, 3,9, 5,6, 3,5, 5,4, 5,2, 4,1, 5,0, 3,1, 5,8, 4,8, 4,4, 4,6, 5,1, 4,7, 3,0, 5,5, 6,1, 3,8, 4,9, 5,6, 6,1, 5,9, 4,2, 6,4, 5,3, 4,5, 4,9, 4,0, 5,2, 3,3, 5,4, 4,7, 6,4, 5,1, 3,4, 5,2, 6,2, 4,4, 4,3, 5,8, 3,7. Sporządzić dla danej próbki szereg rozdzielczy. Dla danej próbki zbudować szereg rozdzielczy przedziałowy i obliczyć kwartyle. I tu zaczyna się problem. Bo nie mam zielonego pojęcia jak. Mam podany wzór jakiś ale jak podstawiam to wychodzi mi na minusie. Czy mógłby ktoś pomóc?
1) Podaj liczbę przeciwną do -5. 2) Czy wartość podanego wyrażenia -2 · (-5) : 7 jest liczbą dodatnią czy ujemną? 3) Oblicz -5 - 9 4) Oblicz działanie (-3) - (-5) 5) Oblicz (-2) 3 6) Podaj liczbę odwrotną do 7. 7) Czy podana równość jest prawdziwa? (-12) x 5 = 12 x (-5) 8) Oblicz działanie 10 - (-4) 9) Która liczba jest większa? ǀ-13ǀ ? 13 10) Oblicz działanie -19 + 60 11) Wartość bezwzględna których liczb jest równa 125? 12) Oblicz (-9) 2 13) Oblicz 0 - 11 14) Podaj liczbę odwrotną do 0,6 15) Podaj liczbę przeciwną do 1,5 16) Czy prawdziwe jest zdanie: Liczba -8 jest większa od liczby -3. 17) Oblicz -124+456+124 18) Oblicz -11+(-45) 19) Jaką liczbą zastąpić znak zapytania, żeby równość była prawdziwa? ? · (-3) = 21 20) Które działanie wykonasz jako pierwsze? (-3) -(-9) · 5 21) Czy wartość podanego wyrażenia -2 · (-8) · 0 : (-5) jest liczbą dodatnią czy ujemną? 22) Oblicz ǀ-25ǀ - 5 23) Oblicz 24 : (-8) 24) Oblicz (-2) · 12 : 6 Ranking Odkryj karty jest szablonem otwartym. Nie generuje wyników na tablicy. Wymagane logowanie Opcje Zmień szablon Materiały interaktywne Więcej formatów pojawi się w czasie gry w ćwiczenie.
Wpisz w polu obok wzór funkcji zmiennej xCzy o taką funkcję Ci chodzi?$$$$Poczekaj kilka sekund na załadowanie kalkulatora... Chcesz obliczyć pochodną funkcji? Zobacz kalkulator pochodnych funkcji jednej zmiennej, który oprócz wyniku pokaże Ci wskazówki do obliczyć całkę nieoznaczoną? Zobacz kalkulator całek nieoznaczonych, który wyświetla podpowiedzi do działa kalkulator asymptot funkcji?Program obliczy asymptoty ukośne funkcji jednej zmiennej postaci:\[y=f(x)\]UWAGA: Kalkulator nie oblicza asymptot pionowych, a jedynie ukośne (w tym asymptotę poziomą).Poniżej znajdziesz dokładny opis sposobów wpisywania funkcji jednej zmiennej do działania matematyczne:+ dodawanie, np. x+x^8 daje funkcję \[f(x)=x+x^8\]- odejmowanie, np. x^9-7*x^(2/3) daje funkcję \[f(x)=x^9-7x^{\frac{2}{3}}\]* mnożenie, np. x^4*cos(x) daje funkcję \[f(x)=x^4\cdot \cos(x)\]/ dzielenie, np. (2*x-1)/(3^x-6*ln(x)) daje funkcję \[f(x)=\frac{2x-1}{3^x-6\ln(x)}\]^ potęgowanie, np. x^5 daje funkcję \[f(x)=x^5\]Kombinacje różnych działań:(ln(x^4+1)+2)/(tg(2*x)*sin(x)) daje funkcję \[f(x)=\frac{\ln(x^4+1)+2}{tg(2*x)\cdot \sin(x)}\]Pierwiastki:sqrt(x)lubx^ lubx^(1/2) daje funkcję \[f(x)=\sqrt{x}\]x^(1/3) daje funkcję \[f(x)=\sqrt[3]{x}=x^{\frac{1}{3}}\]x^(1/4) daje funkcję \[f(x)=\sqrt[4]{x}=x^{\frac{1}{4}}\]Funkcje trygonometryczne:sin(x) daje funkcję \[f(x)=\sin(x)\]cos(x) daje funkcję \[f(x)=\cos(x)\]tg(x) daje funkcję \[f(x)=tg(x)\]ctg(x) daje funkcję \[f(x)=ctg(x)\]Funkcje odwrotne do trygonometrycznych (funkcje cyklometryczne):arcsin(x) daje funkcję \[f(x)=\arcsin(x)\]arccos(x) daje funkcję \[f(x)=\arccos(x)\]arctg(x) daje funkcję \[f(x)=arctg(x)\]arcctg(x) daje funkcję \[f(x)=arcctg(x)\]Funkcja logarytmiczna i eksponencjalna:ln(x) daje funkcję \[f(x)=\ln(x)=log_{e}(x)\]exp(x) lub e^x daje funkcję \[f(x)=\exp(x)=e^x\]Inne funkcje:abs(x) daje funkcję moduł (wartość bezwzględna) z x \[f(x)=|x|\]Stałe matematyczne:e daje liczbę Eulera \(e\approx 2,7182818\)pi daje liczbę "Pi" \(\pi\approx 3,1416\)+inf lub +nieskończoność daje + nieskończoność \(+\infty\)-inf lub +nieskończoność daje - nieskończoność \(-\infty\)Nadal nie wiesz jak korzystać z kalkulatora? Zadaj pytanie w komentarzu poniżej.
oblicz 4 9 2 1 6